Volume 5, Issue 2, June 2020, Page: 109-117
Case Study of a Clean Energy Solution by Employing the Distributed Energy Sources Based on Perovskite Solar Cells
Zhihao Li, Laboratory of Renewable Energy Research, Faculty of Science and Engineering, Ningbo University, Ningbo, China
Kuan Way Chee, Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo, China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
Zhenhai Yang, Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo, China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
Jiapeng Su, Laboratory of Renewable Energy Research, Faculty of Science and Engineering, Ningbo University, Ningbo, China
Anjun Jin, Laboratory of Renewable Energy Research, Faculty of Science and Engineering, Ningbo University, Ningbo, China
Received: Apr. 5, 2020;       Accepted: Apr. 24, 2020;       Published: Jun. 18, 2020
DOI: 10.11648/j.ajset.20200502.17      View  102      Downloads  86
Abstract
Case Study of a Clean Energy Solution by Employing the Distributed Energy Sources Based on Perovskite Solar Cells
Keywords
Distributed Energy Source, Renewable Energy, Perovskite Solar Cell, Energy Storage, Energy Management System, High Efficiency
To cite this article
Zhihao Li, Kuan Way Chee, Zhenhai Yang, Jiapeng Su, Anjun Jin, Case Study of a Clean Energy Solution by Employing the Distributed Energy Sources Based on Perovskite Solar Cells, American Journal of Science, Engineering and Technology. Special Issue: Advances in Thermoelectric Generation and Renewable Energies. Vol. 5, No. 2, 2020, pp. 109-117. doi: 10.11648/j.ajset.20200502.17
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Woodrow W, Clark (2010). Sustainable Communities Design Handbook”. Germany, Elsevier Press. 65-81.
[2]
Woodrow W, Clark. AJ, Jin (2018). Sustainable Cities and Communities Design Handbook. Green Engineering, Architecture, and Technology. 111-128.
[3]
The Public Utility Regulatory Policies Act. Public Utility Regulatory Policies Act is a United States Act passed as part of the National Energy Act. https://en.wikipedia.org/wiki/Public_Utility_Regulatory_Policies_Act.
[4]
Kittner N, Lill F, Kammen D M (2017). Energy storage deployment and innovation for the clean energy transition. Nature Energy. 2 (9): 17125.
[5]
NRL, a Collection of National Renewable Energy Laboratory database enlists the best research cells efficiency confirmed for research cells, from 1976 to the present, for a range of photovoltaic technologies; https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf.
[6]
Park N G, Grätzel M, Miyasaka T, et al (2016). Towards stable and commercially available perovskite solar cells. Nature Energy. 1 (11): 16152.
[7]
Correa-Baena J P, Abate A, Saliba M, et al (2017). The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10 (3): 710-727.
[8]
Christians J A, Schulz P, Tinkham J S, et al (2017). Tailored interfaces of unencapsulated perovskite solar cells for >1, 000 hour operational stability. 3 (1): 68-74.
[9]
KhalidMahmood, ArshiKhalid, & Taqimehran, M. (2019). Mapbi 3 microneedle-arrays for perovskite photovoltaic application. Nanoscale Advances, 1.
[10]
Bush K A, Palmstrom A F, Yu Z J, et al (2017). 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy. 2 (4): 17009.
[11]
Wu W Q, Wang Q, Fang Y, et al (2018). Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nature Communications. 9 (1): 1625.
[12]
Zhang X, Ren X, Liu B, et al (2017). Stable High Efficiency Two-Dimensional Perovskite Solar Cells via Cesium Doping. Energy Environ. Sci. 10 (10): 2095-2102.
[13]
Eperon G E, Leijtens T, Bush K A, et al (2016). Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science. 354 (6314). 861-865.
[14]
Grancini G, Roldán-Carmona, C, Zimmermann I, et al (2017). One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications. 8: 15684.
[15]
US 4668595, Yoshino; Akira, "Secondary Battery", issued 10 May 1985, assigned to Asahi Kasei.
[16]
M. Liu and Y. Xu; "Energy Storage Applications 2017" Top-10 award; The 1st International Conference on Energy Storage Materials (ICENSM 2017).
[17]
Urbain F, Murcia-López S, Nembhard N, et al (2019). Solar vanadium redoxflow battery powered by thin-film silicon photovoltaics for efficient photoelectrochemical energy storage. Phys D-Appl Phys, 52: 044001.
[18]
Lei B, Li G R, Chen P, et al (2017). A solar rechargeable battery based on hydrogen storage mechanism in dual-phase electrolyte. Nano Energy. 38: 257–262.
[19]
Liao W M, Zhang J H, Hou Y J, et al (2016). Visible-light-driven CO2 photocatalytic reduction of Ru (II) and Ir (III) coordination complexes. InOrg Chem Commun. 73: 80–89.
[20]
Mark Osborne. Oxford PV takes record perovskite tandem solar cell to 27.3% conversion efficiency. https://www.pv-tech.org/news/oxford-pv-takes-record-perovskite-tandem-solar-cell-to-27.3-conversion-effi
[21]
Juarez-Perez, Emilio J, Ono Luis K, Maeda, et al (2018). Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. Journal of Materials Chemistry A. 6 (20). 9604-9621.
[22]
Chynoweth, A. G (1960). Pyroelectricity, Internal Domains, and Interface Charges in Triglycine Sulfate. Physical Review. 117 (5): 1235-1243.
[23]
Chen, F. S (1969). Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3. Journal of Applied Physics. 40 (8): 3389.
[24]
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Park, N.-G (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports. 2 (1).
[25]
Lee M M, Teuscher J, Miyasaka T, et al (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338 (6107): 643-647.
[26]
Ball J M, Lee M M, Hey A, et al (2013). Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science. 6 (6): 1739-1743.
[27]
Burschka J, Pellet N, Moon S J, et al (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 499 (7458): 316-319.
[28]
Liu M, Johnston M B, Snaith H J (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 501 (7467): 395.
[29]
Jeon, N. J., Lee, H. G., Kim, Y. C., Seo, J., Noh, J. H., Lee, J., & Seok, S (2014). io-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells. Journal of the American Chemical Society. 136 (22): 7837–7840.
[30]
J. Cao, B. Wu, R. Chen, Y. Wu, Y. Hui, B. W. Mao, and N. Zheng (2018); A Multi‐Yolk–Shell Structured Nanocatalyst Containing Sub‐10 nm Pd Nanoparticles in Porous CeO2. Advanced materials. 30 (11), 1705596.
[31]
Yang W S, Noh J H, Jeon N J, et al (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science. 348 (6240): 1234.
[32]
Yang W S, Park B W, Jung E H, et al (2017). Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science. 356 (6345): 1376-1379.
[33]
Jeon N J, Na H, Jung E H, et al (2018). A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 3 (8).
[34]
Park, Nam-Gyu (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18 (2): 65-72.
[35]
Löper P, Stuckelberger M, Niesen B, et al (2015). Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. Journal of Physical Chemistry Letters. 6 (1): 66-71.
[36]
Chen W, Wu Y, Yue Y, et al (2015). Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science. 350 (6263): 944-948.
[37]
Zhu X, Su H, Marcus R A, et al (2014). Computed and Experimental Absorption Spectra of the Perovskite CH3NH3PbI3. Journal of Physical Chemistry Letters. 5 (17): 3061.
[38]
Li W, Zhao K, Zhou H, et al (2018). Precursor solution temperature dependence of optical constants, band gap and Urbach tail in organic-inorganic hybrid halide Perovskite films. Journal of Physics D Applied Physics. 52 (4): 045103
[39]
Li W, Sha T, Wang Y, et al (2017). Effects of deposition methods and processing techniques on band gap, interband electronic transitions, and optical absorption in perovskite CH3NH3PbI3 films. Applied Physics Letters. 111 (1), 011906.
[40]
Kim J, Yun J S, Cho Y, et al (2017). Overcoming the Challenges of Large-Area High-Efficiency Perovskite Solar Cells. Acs Energy Letters. 2 (9): 1978-1984.
[41]
Ye F Tang W, Xie F, et al (2017). Low-Temperature Soft-Cover Deposition of Uniform Large-Scale Perovskite Films for High-Performance Solar Cells. Advanced Materials. 29 (35): 1701440.
[42]
Stolterfoht M, Wolff C M, Márquez J A, et al (2018). Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nature Energy. 3 (10).
[43]
Lu J, Lin X, Jiao X, et al (2018). Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy & Environmental Science. 11 (7): 10.1039.
[44]
Saliba M, Matsui T, Domanski K, et al (2016). Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science. 354 (6309): 206.
[45]
Tan H, Jain A, Voznyy O, et al (2017). Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science. 355 (6326): 722-726.
[46]
Lee Y I, Jeon N J, Kim B J, et al (2017). A Low-Temperature Thin-Film Encapsulation for Enhanced Stability of a Highly Efficient Perovskite Solar Cell. Advanced Energy Materials. 8 (9): 1701928.
[47]
Saidaminov M I, Kim J, Jain A, et al (2018). Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nature Energy. 3 (8): 648-654.
[48]
Snaith (2013), Henry J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters. 4 (21): 3623–3630.
[49]
Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., … Snaith, H. J (2014). Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7 (9), 3061–3068.
[50]
Abate, Antonio; Saliba, Michael; Hollman, Derek J.; Stranks, Samuel D.; Wojciechowski, Konrad; Avolio, Roberto; Grancini, Giulia; Petrozza, Annamaria; Snaith, Henry J (2014). Supramolecular Halogen Bond Passivation of Organic–Inorganic Halide Perovskite Solar Cells. Nano Letters. 14 (6): 3247–3254.
[51]
Tai, Q., Tang, K.-C., & Yan, F (2019). Recent progress of inorganic perovskite solar cells. Energy & Environmental Science. 12, 2375-2405
[52]
Khan, U., Zhinong, Y., Khan, A. A, Zulfiqar, A., & khan, Q. U (2019). Organic–inorganic hybrid perovskites based on methylamine lead halide solar cell. Solar Energy. 189, 421–425.
[53]
Li, Z., Klein, T. R., Kim, D. H., Yang, M., Berry, J. J., van Hest, M. F. A. M., & Zhu, K (2018). Scalable fabrication of perovskite solar cells. Nature Reviews Materials. 3 (4), 18017.
[54]
Chen, H., Xiang, S., Li, W., Liu, H., Zhu, L., & Yang, S (2018). Inorganic Perovskite Solar Cells: A Rapidly Growing Fiel. Solar RRL. 2 (2), 1700188.
[55]
Emiliano Bellini. Netherlands’ ECN achieves 30.2% efficiency for bifacial tandem cell based on perovskite. https://www.pv-magazine.com/2019/03/04/netherlands-ecn-achieves-30-2-efficiency-for-bifacial-tandem-cell-based-on-perovskite/
[56]
Bailie C D, Christoforo M G, Mailoa J P, et al (2014). Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy & Environmental Science, 8 (3): 956-963.
[57]
Bush K A, Bailie C D, Chen Y, et al (2016). Thermal and Environmental Stability of Semi-Transparent Perovskite Solar Cells for Tandems Enabled by a Solution-Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode. Advanced Materials. 28 (20): 3937-3943.
[58]
Albrecht S., Saliba M., Correa Baena J. Lang P., F., Kegelmann L., Mews M., Steier L., Abate A., Rappich J., Korte L., Schlatmann R., Nazeeruddin M. K., Hagfeldt A., Grätzel M., Rech B (2015). Monolithic Perovskite/Silicon- Heterojunction Tandem Solar Cells Processed at Low Temperature. Energy Environ. Sci. 9 (1): 81-88.
[59]
Chen B, Bai Y, Yu Z, et al (2016). Efficient Semitransparent Perovskite Solar Cells for 23.0%‐Efficiency Perovskite/ Silicon Four‐Terminal Tandem Cells. Advanced Energy Materials. 6 (19): 1601128.
[60]
Werner J, Barraud L, Walter A, et al (2016). Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells. 1, 474-480.
[61]
Charles Chee Surya,; PolyU Develops Perovskite-Silicon Tandem Solar Cells with the World's Highest Power ConversionEfficiency.https://www.polyu.edu.hk/web/en/media/media_releases/index_id_6208.html
[62]
Werner J, Weng C H, Walter A, et al (2016). Efficient Monolithic Perovskite/Silicon Tandem Solar Cell With Cell Area > 1 cm (2). Journal of Physical Chemistry Letters. 7 (1): 161-166.
[63]
Sahli F, Werner J, Kamino B A, et al (2018). Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials. 17 (9).
Browse journals by subject